KMS Nanjing Institute of Geology and Palaeonotology,CAS
Rapid transition from continental breakup to igneous oceanic crust in the South China Sea | |
Larsen, H. C.1,2; Mohn, G.3; Nirrengarten, M.3; Sun, Z.4; Stock, J.5; Jian, Z.1; Klaus, A.6; Alvarez-Zarikian, C. A.6; Boaga, J.7; Bowden, S. A.8 | |
2018-10-01 | |
Source Publication | NATURE GEOSCIENCE
![]() |
ISSN | 1752-0894 |
Volume | 11Issue:10Pages:782-+ |
Abstract | Continental breakup represents the successful process of rifting and thinning of the continental lithosphere, leading to plate rupture and initiation of oceanic crust formation. Magmatism during breakup seems to follow a path of either excessive, transient magmatism (magma-rich margins) or of igneous starvation (magma-poor margins). The latter type is characterized by extreme continental lithospheric extension and mantle exhumation prior to igneous oceanic crust formation. Discovery of magma-poor margins has raised fundamental questions about the onset of ocean-floor type magmatism, and has guided interpretation of seismic data across many rifted margins, including the highly extended northern South China Sea margin. Here we report International Ocean Discovery Program drilling data from the northern South China Sea margin, testing the magma-poor margin model outside the North Atlantic. Contrary to expectations, results show initiation of Mid-Ocean Ridge basalt type magmatism during breakup, with a narrow and rapid transition into igneous oceanic crust. Coring and seismic data suggest that fast lithospheric extension without mantle exhumation generated a margin structure between the two endmembers. Asthenospheric upwelling yielding Mid-Ocean Ridge basalt-type magmatism from normal-temperature mantle during final breakup is interpreted to reflect rapid rifting within thin pre-rift lithosphere. |
DOI | 10.1038/s41561-018-0198-1 |
Language | 英语 |
WOS Keyword | Northern Margin ; Rifted Margins ; Iberia-newfoundland ; Thermal Structure ; Magma-poor ; Extension ; Generation ; Evolution ; Atlantic ; Lithosphere |
Funding Project | NSF[OCE-1326927] ; Korean IODP program (KIODP) |
WOS Research Area | Geology |
WOS Subject | Geosciences, Multidisciplinary |
WOS ID | WOS:000446089100018 |
Funding Organization | NSF ; Korean IODP program (KIODP) |
Publisher | NATURE PUBLISHING GROUP |
Document Type | 期刊论文 |
Identifier | http://ir.nigpas.ac.cn/handle/332004/16889 |
Collection | 中国科学院南京地质古生物研究所 其他 |
Corresponding Author | Larsen, H. C.; Mohn, G. |
Affiliation | 1.Tongji Univ, State Key Lab Marine Geol, Shanghai, Peoples R China 2.Geol Survey Denmark & Greenland, Copenhagen, Denmark 3.Univ Cergy Pontoise, Lab Geosci & Environm Cergy GEC, Neuville Sur Oise, France 4.South China Sea Inst Oceanol, CAS Key Lab Ocean & Marginal Sea Geol, Guangzhou, Guangdong, Peoples R China 5.CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA 6.Texas A&M Univ, Int Ocean Discovery Program, College Stn, TX USA 7.Univ Padua, Dipartimento Geosci, Padua, Italy 8.Univ Aberdeen, Sch Geosci, Aberdeen, Scotland 9.Univ Toulouse, Obs Midi Pyrenees, CmNES, GET,IRD,CNRS UMR 5563, Toulouse, France 10.Chinese Acad Sci, Guangzhou Inst Geochem, Guangzhou, Guangdong, Peoples R China |
Recommended Citation GB/T 7714 | Larsen, H. C.,Mohn, G.,Nirrengarten, M.,et al. Rapid transition from continental breakup to igneous oceanic crust in the South China Sea[J]. NATURE GEOSCIENCE,2018,11(10):782-+. |
APA | Larsen, H. C..,Mohn, G..,Nirrengarten, M..,Sun, Z..,Stock, J..,...&Zhong, L..(2018).Rapid transition from continental breakup to igneous oceanic crust in the South China Sea.NATURE GEOSCIENCE,11(10),782-+. |
MLA | Larsen, H. C.,et al."Rapid transition from continental breakup to igneous oceanic crust in the South China Sea".NATURE GEOSCIENCE 11.10(2018):782-+. |
Files in This Item: | ||||||
File Name/Size | DocType | Version | Access | License |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment